

#### **Examining User Requirements for a Digital Twin Capability Supporting Naval Platform Management and Operations**

#### TTCP Digital Twin Community of Interest Presenter: Benjamin Grisso POC: Dorsey Mitchell (dorsey.w.wmitchell.civ@army.mil)

Anthony Woolley, Dorsey Mitchell, David Drazen, Eric Tuegel, Benjamin Grisso, Alysson Mondoro, Neil Pegg, Ian Thompson, Ian Greening, Jason Guey, Teresa Magoga, Peter Hield, John Chisholm and Zenka Mathys



### Overview

- Background
- Aim
- Method
- Analysis and results
- Conclusion

Terms 'platform' & 'ship' used interchangeably









# What is TTCP?

- The Technical Cooperation Program (TTCP) is a collaborative five-nation forum between UK, USA, Canada, Australia and New Zealand
- TTCP originated in agreements reached between the President of the United States and the Prime Minister of the United Kingdom in October 1957
- Recently, a Digital Twin Community of Interest was established with participation across the technical divisions





# The Need for Digital Engineering Technology



- Ship & fleet preparedness for faster response, longer duration on station and more flexibility in support of operations.
- Highly capable and versatile naval and maritime forces.
- Versatility and flexibility to contribute to a myriad of tasks required across the spectrum of conflict.
- Exploit technology advancements in digital engineering e.g. Digital Twin.
- The rapid spread of technology will support and challenge the requirement to maintain a regional capability edge in advanced warfighting and enabling capabilities.



# The Digital Twin

A Digital Twin implements a virtual representation of a physical system by way of integrated multi-physics, multi-scale, probabilistic simulation and models of the as-built physical system utilising the best available sensor updates, fleet history, etc., to interact with and mirror the operation of the corresponding physical system.





### **Digital Twin in the Naval Environment**



- Used for visualisation, virtual prototyping, design across time zones, build, and delivery
- Link/fusion between physical and virtual environment of product
  - Data obtained over life-cycle can be analysed in virtual environment, e.g. in physics-based modelling
- Enables:
  - identification of corrective measures, and recommendations for preventive actions
  - prediction of optimum performance, and susceptibility of a naval ship
  - enhanced resource allocation, and in-situ decision-making



### Digital Twin in Support of Naval Platform and Operations

Aim: to identify processes that could be enabled or enhanced by a Digital Twin





## Study Method

Scenario Development

Collection of interview data

Processing of interview data

Journey Map development

• Identify gain and pain points (what does/does not work well)

#### Workshops

- Identification of concepts supporting the scenarios
- Ranking of concepts
- Pros and cons of concepts

#### Thematic Analysis



•••

#### Scenarios



#### 1. <u>Platform Selection and Readiness</u>

processes for selection and readiness of suitable ship for sixmonth task force deployment

#### 2. <u>Platform Class Life-of-Type</u> <u>Management</u>

management of fleet of mid-life ships for remaining years of service

#### 3. <u>Underway Management</u>

understand provision of operational guidance

#### 4. <u>Survivability</u>

decision-making during damage control and recovery of a ship after a damage event

#### Semi-Structured Interviews

Scripted questions with allowance for follow-up questions (e.g. to seek clarification):

- i. <u>Demographics</u>
  - e.g. How long have you been in the navy?
- ii. Role identification

**e.g.** With respect to your job role, what procedures would you change to make it easier or faster?

#### iii. Decision-making

**e.g.** What is the greatest source of uncertainty that affects your decision-making?

#### iv. Information requirements

*e.g.* What information, not normally available to you, might help you make a decision or make a decision quicker?

#### **Thematic Analysis**

- Allows identification of themes, or patterns of meaning, from raw data
- Can inform key features and requirements of a future technology, product, process etc



 Inductive analysis via workshops and mathematical analysis



platforms; the available data and tools to enable decision-making; and policies that might constrain or further enable their decision-making





### Journey Map Scenario 2 – Platform Class Lifeof-Type Management





# Workshop Overview

- present scenario description
- definition of the Digital Twin concept (Prof. Matt Collette video: <u>https://www.youtube.com/watch?v=emmzycj\_rf0</u>)
- Breakout Session 1: Journey Map discussion, validation, and identification of domains suited and not suited to Digital Twin application
- Journey Map Share Out to discuss key point identified during Breakout Session 1
- Breakout Session 2: identification of concept applications supporting the scenario
- cohort discussion of concepts identified during Breakout Session 2
- cohort vote to identify top three concepts (voting criteria: most feasible; and most impactful)
- Breakout Session 3: teams identify advantages/disadvantages for their respective concept making the case: each team champions the concept to which they were assigned
- cohort vote to identify top two concepts (voting criteria: most feasible; and most impactful)



# Workshops – End User Understanding for Application of Digital Twin

#### What a Digital Twin needs to address

- method of data collection (automation versus manually entered);
- connectivity between data sources, sensors, systems, models;
- data validation and verification; and
- trust and uncertainty in decision-making
- legacy systems and the fleet-in-being
- integration of the Digital Twin into current procedures
- deployment aboard platforms

#### Applications for which a Digital Twin might not be suitable

- when there is over-reliance on Digital Twin output for decision-making without physical verification
- cost-benefit of implementing the Digital Twin
- inability to validate/verify the data and outputs
- when data aggregation becomes a security risk
- quantifying the state of the crew

#### Applications for which a Digital Twin might be suitable

- master data repository
- quantifying platform health
- risk analysis and remediation
- defect forecasting
- fleet evaluation



# Affinity Clustering for Theme Identification

| Scenario 1<br>Platform Selection and<br>Readiness                                                                                                                                                         | Scenario 2<br>Platform Class Life-of-Type<br>Management                                                                                                                                                                                                                                                                                                                                                                                                                      | Scenario 3<br>Underway Management                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Scenario 4<br>Survivability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Quantifying Platform Health</li> <li>Forecasting Platform State and<br/>Defect Prediction</li> <li>Master Data Repository</li> <li>Monitoring Crew Readiness</li> <li>Risk Management</li> </ul> | <ul> <li>Condition Monitoring/Health and<br/>Usage Monitoring</li> <li>Defect Trend Analysis</li> <li>Sparing and Inventory Analysis</li> <li>Platform Capability Management</li> <li>Fleet Evaluation</li> <li>Maintenance Regime Change /<br/>Optimisation / Prioritisation</li> <li>Risk Evaluation and Verification</li> <li>Performance Verification</li> <li>Modernisation / Upgrade<br/>Planning</li> <li>Fatigue Life Tracking</li> <li>Disposal Planning</li> </ul> | <ul> <li>Condition Monitoring/Health<br/>and Usage Monitoring (HUM)</li> <li>Defect Trend Analysis</li> <li>Sparing and Inventory Analysis</li> <li>Platform Capability<br/>Management</li> <li>Fleet Evaluation</li> <li>Maintenance Regime Change /<br/>Optimisation / Prioritisation</li> <li>Risk Evaluation and<br/>Verification</li> <li>Performance Verification</li> <li>Modernisation / Upgrade<br/>Planning</li> <li>Fatigue Life Tracking</li> <li>Disposal Planning</li> </ul> | <ul> <li>Information synthesis</li> <li>Situation Awareness</li> <li>System performance prediction</li> <li>Ensuring a shared mental<br/>model</li> <li>Risk predication and<br/>prioritization</li> <li>Connectivity with shore bases</li> <li>Resilience of the Digital Twin<br/>(stand-alone aboard the<br/>platform)</li> <li>GUI</li> <li>Prioritisation of human life</li> <li>Training</li> <li>Assimilation with vulnerability<br/>assessment to forecast damage</li> <li>Containment boundaries</li> <li>Forensic analysis</li> </ul> |



# Making the Case Condition Monitoring / HUM

| DT Applicati                                         | on                                                                      | Why this application?                                                                   |                                                         | What changes occur with this                                            |                                                                                                | What barriers exist?                                |                                                                                                      |                                                                              |
|------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Include<br>prediction of<br>failure /<br>degradation | Track and assess<br>data on response<br>and stressors,<br>map to limits | Reduce<br>unnecessary<br>maintenance,<br>downtime, and<br>costs                         | We need to<br>better spare<br>and maintain<br>our ships | We can better<br>support fleet with<br>awareness of<br>equipment status | application?<br>Ship and<br>system<br>replacement<br>and retirement                            | Fleet level<br>decision<br>makers have<br>more data | Data<br>Validation                                                                                   | Data<br>completeness                                                         |
| Maximising<br>platform life                          | Continuous vs<br>point based<br>system health<br>awareness              | We need to<br>provide fleet<br>commanders with<br>better awareness<br>of ship condition | Real-time<br>trend<br>monitoring                        | Take advantage<br>of the large<br>amount of data<br>available           | will be better<br>More accurate<br>health monitoring<br>than Inspection and<br>Survey (INSURV) | More<br>accurate<br>sparing<br>capabilities         | In combat need to<br>minimise<br>communications so<br>Digital Twin update<br>assigned low priority   | Secure real-<br>time data<br>collection with<br>the platform                 |
| Mission<br>Planning                                  |                                                                         | Sparing                                                                                 | Reduced<br>down-time                                    | Reduce<br>Corrective<br>Maintenance                                     | type inspections<br>More<br>accurate<br>info for<br>platform<br>ungrades                       | Better<br>predictive<br>capability                  | Collecting<br>the correct<br>form of data                                                            | Difficult to<br>quantify<br>existing fatigue<br>for legacy<br>platforms      |
|                                                      |                                                                         | All data may not<br>be available -<br>overconfident in<br>risk assessment               | Data fidelity                                           | Aggregation<br>of data for<br>something<br>meaningful<br>to the crew    | of                                                                                             |                                                     | Enhance<br>understanding<br>of degraded<br>performance                                               | empting<br>ailure                                                            |
|                                                      |                                                                         | Security, (c<br>always P                                                                | dundancy<br>on-board<br>the<br>latform)                 |                                                                         |                                                                                                |                                                     | If we could do this acr<br>would have bette<br>capability and we'd h<br>broaden inventory<br>equipme | oss FIVE EYES we<br>or predictive<br>ave a chance to<br>of spares and<br>ent |



### Workshops – Identification of Important Themes

| Scenario 1<br>Platform Selection<br>and Readiness                                                                                                                     | Scenario 2<br>Platform Class Life-of-<br>Type Management                                                                                         | Scenario 3<br>Underway<br>Management                                                                                                       | Scenario 4<br>Survivability                                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Most impact</li> <li>Forecasting<br/>Platform State<br/>and Defect<br/>Prediction</li> <li>Most feasible</li> <li>Quantifying<br/>Platform Health</li> </ul> | <ul> <li>Most impact</li> <li><i>Condition</i><br/><i>Monitoring/HUM</i></li> <li>Most feasible</li> <li><i>Fatigue Life Tracking</i></li> </ul> | <ul> <li>Most impact</li> <li>Rapid Evaluation<br/>of Alternatives for<br/>Mission Planning</li> <li>Most feasible</li> <li>HUM</li> </ul> | <ul> <li>Most impact</li> <li>Situation<br/>Awareness of<br/>Platform and<br/>System State</li> <li>Most feasible</li> <li>Connectivity to<br/>Shore Bases</li> </ul> |



## Thematic Analysis: Processing of Interview Data (aka the Corpus)

- Qualitative data analysis to identify patterned meaning/themes in corpus.
- Corpus pre-processed to de-identify interviewees and ensure extraction of meaningful words and phrases, including:
  - sanitisation of data e.g. simplifying names of directorates and groups to 'office'
  - removal of punctuation and words such as 'a', 'and', and 'the'
  - normalising words to their singular form, and acronyms where appropriate
  - reducing number of synonyms e.g. budget, cost



### Thematic Analysis: Coding of Significant Words and Phrases



- Significance determined by statistic 'term frequency inverse document frequency' (tf-idf)
  - Calculates frequency of a word/phrase appearing in a dataset, weighted by number of interview records in given dataset containing that word/phrase NATO UNCLASSIFIED + AUSTRALIA, SWEDEN AND JAPAN



### **Theme Identification**

| Shore-based                                                                          |                               |                                                                                                                                                                                                                                                             | Sea-based                                                                                          |                                |                                                                                                                                                                                                                |  |
|--------------------------------------------------------------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Code                                                                                 | Theme                         | Key Features                                                                                                                                                                                                                                                | Code                                                                                               | Theme                          | Key Features                                                                                                                                                                                                   |  |
| Seaworthiness<br>Risk Assessment<br>Risk<br>Deployment<br>Maintenance                | Ability to Deploy<br>Platform | <ul> <li>quantitative seaworthiness<br/>assessment</li> <li>policy manuals (tracking &amp;<br/>connectivity)</li> </ul>                                                                                                                                     | Command<br>Risk<br>Capability<br>Communication                                                     | Maintain Mission<br>Capability | <ul> <li>capability impact statements</li> <li>system monitoring,<br/>requirements &amp; reconfiguration</li> <li>defect tracking, risk<br/>identification &amp; acquittal</li> </ul>                          |  |
| Upkeep Cycle<br>Usage<br>Maintenance<br>Availability<br>Contractor<br>Risk<br>Defect | Provision of<br>Maintenance   | <ul> <li>predicting &amp; planning<br/>maintenance requirements<br/>against the state of the platform</li> <li>accessing detailed technical data<br/>for equipment</li> <li>balance between platform<br/>maintenance &amp; platform<br/>upgrades</li> </ul> | DC<br>DC Board<br>DC Huddle<br>Repair Base<br>IPMS<br>Fire<br>Command<br>Priority<br>Communication | Platform<br>Survivability      | <ul> <li>situation awareness &amp; assessment</li> <li>identification &amp; restoration of capability baseline</li> <li>explainable decision-making</li> <li>response planning &amp; prioritisation</li> </ul> |  |
| People                                                                               | Experience of<br>People       | <ul><li>tracking &amp; provision of training</li><li>workforce management.</li></ul>                                                                                                                                                                        | People<br>Training<br>Management<br>Communication                                                  | People at Sea                  | <ul> <li>tracking of training, skills,<br/>experience requirements</li> <li>personnel deficiency reports &amp;<br/>filling of vacancies</li> </ul>                                                             |  |



# **Thematic Analysis: Theme Analysis**

- A common thread was 'connectivity and continuity'
  - Facilitates audit tracking and justifiable decision-making
    - Connecting disparate policy documents to ensure robust process and clear Capability Impact Statement
    - Data amalgamation, including data validity and providence → important for planning and risk assessments
  - On-board ship, data contributes to situation awareness e.g. data needed during Damage Control
  - For shore-based ship management, data represents state of ship and systems
    - Used in maintenance planning, parts sparing, and monitoring of remaining life of hull & other systems



# Thematic Analysis: Theme Analysis (cont.)

- 2 themes related to people identified in corpus
  - Whilst leadership and interpersonal skills are important, they cannot be enabled by a Digital Twin → not represented in themes
  - A Digital Twin can support management of people e.g. tracking of technical skills when filling personnel deficiency on-board ships
    - People gain experience through achievement of their job roles
    - Skills can enable people to adapt to new situations and ease transition into new job roles
    - Difficult to quantify personal experience as actionable information for use in a Digital Twin, but knowledge elucidation techniques are available



## **Converting Features to Functional Requirements**

- Found overlaps in functional requirements e.g. 'data validation'
  - 1. 'data validation and completeness checking' (Ability to Deploy the Platform)
  - 2. 'data validation and trend monitoring' (Maintaining Mission Capability)
  - 3. 'data validation and integration' (Platform Survivability)
- Need to ensure key features convey functional requirements

To assess platform state, need to monitor platform systems and perform trend analysis

| Key feature                                     | 'predicting and planning maintenance requirements against the state of the platform'<br>( <i>Provision of Maintenance</i> ) |                                          |  |  |  |
|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--|--|--|
|                                                 | Explicit                                                                                                                    | Implicit                                 |  |  |  |
| Requirements                                    | <ul> <li>'ability to predict maintenance<br/>requirements'</li> <li>'ability to plan maintenance'</li> </ul>                | • 'ability to assess the platform state' |  |  |  |
| NATO UNCLASSIFIED + AUSTRALIA, SWEDEN AND JAPAN |                                                                                                                             |                                          |  |  |  |



# Implementation of a Digital Twin

- Identify the problem to be solved with the implementation of a digital engineering solution.
- Is a Digital Twin the optimal solution?
- Cost-benefit analysis of implementing the solution.
- Identification of off-the-shelf technologies satisfying the requirements.
- Is R&D of bespoke software and hardware tools required?



May be implemented as specific modules







# Implementation of a Digital Twin (cont.)

- Data is a key enabler  $\rightarrow$  processing and validation of data are important
  - Data collection frequency, fidelity, and security are tied to modelling requirements
  - Can utilise edge (local) computing, but data processing more likely to occur closer to modelling & simulation architecture for legacy ships
- Need to assess computing infrastructure to enable requirements setting





## Conclusion

• A navy must be resilient and adaptable to evolving operational & threat environments and maintain ship & fleet readiness → exploit advancements in digital engineering ...

Which processes could be enabled or enhanced by a Digital Twin of a physical system?

• Conducted thematic analysis of data collected during interviews with potential DT endusers, and derived functional requirements

'data validation and completeness checking'



- For a Digital Twin to enable/enhance processes within a specific application, need to:
  - Respect importance of data (processing, validation and relationship to modelling & simulation)
  - Assess computing infrastructure (e.g. internal to ship, between shore-based facilities)



# Acknowledgements

- The TTCP Digital Twin CoI thank the interview respondents for giving their time and sharing their knowledge and expertise during the interviews.
- The TTCP Digital Twin CoI also the workshop participants, also giving their time to share their knowledge and experience.
- Thank you to Associate Professor Matthew Collette, Naval Architecture and Marine Engineering, University of Michigan, for providing an overview of the Digital Twin concept to the TTCP Digital Twin Col.
- Thank you to Sondra Laughlin, David Schiff, Michael Lavery, and Lauren Hanyok, NavalX, United States Navy, for guidance in ethnographic interviews and the visualisation of interview data; creating detailed workshop programs; and hosting of the workshops, ensuring a safe environment for participants to contribute in free discussion.
- Ethical clearance for RAN involvement was provided by the DSTG Low Risk Ethics Panel (protocol: MD 06-20).



## **Future Work**

- Implementation of a DT is application-specific (not-standardised) → need to identify/develop:
  - computing infrastructure (communications, databases, hardware requirements) to ensure connectivity and security
  - modelling software to fill gaps not supported by legacy systems



 Broaden the study: interview more end-users → capture diversity of issues encountered by personnel supporting naval platforms
 NATO UNCLASSIFIED + AUSTRALIA, SWEDEN AND JAPAN



### Summary – Digital Engineering Support to Naval Operations





## Journey Maps





### **Collection of Interview Data**

#### Demographics

- •To understand interviewee's experience
- Identify statistical spread of respondents

#### **Role Identification**

- •To identify interviewee's role
- •To identify interviewee's duties in relation to the scenario
- •To identify tools and policies to perform those duties

#### Goal Identification

- To identify the intent of the interviewee's role
- •To identify what the interviewee needs to achieve in fulfilment of the role

#### Decision-making

- •To identify decisions required in achievement of the goal(s)
- •To identify time constraints associated with achievement of the goal(s)

#### Information Requirements

•To identify information needs in support of the decision-making NATO UNCLASSIFIED + AUSTRALIA, SWEDEN AND JAPAN